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1.0  Background and Motivation 
 

In recent decades the Air Force, through the Air Force Research Laboratory 
(AFRL) Information Directorate (previously Rome Laboratory and Rome Air 
Development Center), has sponsored a substantial amount of research in the area of 
signal detection and parameter estimation.  Likewise, industry and academia have 
invested significant efforts in these areas due to the benefits of such research to sonar, 
radar and communication applications.  In particular, the Air Force has expended much 
effort to address the problem of automated, single-channel spectral survey.  The goal of 
automated spectral survey is to process a digitized signal, typically from a step-tuned 
scanning receiver, to automatically (or semi-automatically) determine the presence of 
communications signals and their associated center frequencies (CFs), bandwidths (BWs) 
and signal-to-noise ratios (SNRs).  It is assumed that little or no a-priori knowledge exists 
regarding the digitized signal1.  The lack of a-priori knowledge gives rise to terms such as 
“blind signal detection” and “blind parameter estimation.”  Within the scientific 
community as a whole, any digitized input signal can be of interest; other examples 
include speech and seismic signals.  The present work is concerned with any simulated 
digital signal or analog signal acquired via an analog-to-digital converter (ADC).  
Through previous AF sponsorship, candidate software-based techniques for automated 
spectral survey were implemented for testing.  However, no “acceptable” solution was 
found at that time; therefore, further development of these techniques was not performed.  
To be considered “acceptable” a technique must be computationally stable, require 
affordable computational resources, allow for ease of use by an operator, be timely, and 
be effective.  Note that although spectral and parameter estimation techniques are 
abundant in the literature, automated blind signal detection remains relatively 
unaddressed. 

Not surprisingly, problems with proposed solutions were associated with the 
activity detection function required for automated spectral survey.  The processes that 
were developed utilized the log-spectrogram (a series of log-scaled periodograms) as pre-
processing prior to detection and estimation of CF, BW and SNR for each component 
signal comprising the input signal.  For the communications intercept application, the 
detection and estimation tasks were already being performed manually by an operator 
who would visually inspect such spectrograms or equivalent frequency panoramic 
displays on receive equipment.  An appropriately trained operator can perform these 
tasks quite well in many signal scenarios.  For these same scenarios, however, the 
automated algorithms tended to either break a single communication signal into multiple 
frequency bands, or to combine unrelated but spectrally close signals into single signals.  
An additional related problem had to do with the number of parameters associated with 
the software.  Too many (and often confusing) software parameters left such techniques 
unattractive, even as an operator aid.  Also, where spectrally overlapping, time-
coincident signals were present, no means was provided in previously proposed 
techniques to help assess this co-channel scenario. 

                                                 
1 Note that the digitized signal can actually have numerous signals-of-interest (or just portions of these 
signals) in the Nyquist band; the advancement of analog-to-digital converters allows for Megahertz-wide 
input bandwidths with sufficiently high dynamic range to collect many signals in a single scan step. 
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Based on knowledge of the above requirements and deficiencies of existing 
known techniques, the Adjustable Bandwidth Concept (ABC) signal energy detection 
technique was conceived, and ultimately patented (U.S. Patent 5,257,211).  This 
technique is described in more detail in Appendix A and Section 2 and is the subject of 
this report. 
 
 
1.1  Rationale for Problem Selection 
 

Experimental tests and analyses of ABC algorithm implementations, first in the C 
language and then in Matlab (Mathworks, Inc.), demonstrated the effectiveness of the 
technique.  Using simple threshold detection methods, visual inspection of a variety of 
input signal spectrograms and detection results led to the conclusion that these results 
corresponded quite well with human assessment of the spectrograms.  Both computer-
generated signal sequences and actual digitized signals were used during these 
experiments. 

These subjective results were encouraging and provide motivation for further 
study to obtain quantitative performance measures.  Although few parameters are 
required by the ABC algorithm, a more rigorous approach to the evaluation could also 
help to identify sensitivities to algorithm parameters.  As is often the case, analytical 
results may also lead to algorithm modifications for enhanced performance.  Thus the 
need was identified to quantify the detection results both with further experiments, and 
with analytical methods.  In this report, detection probabilities and false-alarm rates for 
relevant ranges of SNR values have been established.  These results are presented in the 
form of receiver operating characteristic (ROC) curves. 
 
 
1.2  Potential Impact 

 
The quantification of ABC algorithm performance as presented in this research 

serves to justify its usage in a variety of DoD/Air Force and commercial applications.  It 
is a necessary step in the transition of this work to 6.2 (Exploratory Development).  The 
primary Air Force applications are in Command and Control (CC) communication 
systems, and Intelligence Surveillance and Reconnaissance (ISR) systems.  With regard 
to ISR, systems exist that fuse together a variety of information sources including ISR 
outputs to help situational awareness.  These fusion systems require confidence measures 
for sensor outputs, particularly when dealing with ISR information.  Without these 
confidence measures, the reliability or believability of the aggregate result remains in 
question.  For CC, dissemination of information via communication links can be 
facilitated by channel assessments prior to transmissions.  In both ISR and CC, 
intentional and unintentional interference occurs, particularly in dense signal 
environments.  The ABC algorithm along with detection and parameter estimation can be 
used to either avoid contaminated channels, or to direct interference mitigation 
techniques.  Other applications include automated testing for Electromagnetic 
Interference (EMI) and Electromagnetic Compatibility (EMC), TEMPEST testing and 
FCC compliance testing. 
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 Given the recent growth in personal communication systems and the wide variety 
and number of electronic systems that emanate electromagnetic energy, “policing” the 
electromagnetic spectrum is a rather daunting task, and currently requires human 
assistance.  Likewise, in both the government and commercial sectors, automated means 
of equipment compliance tests and evaluations can facilitate development and 
production.  Furthermore, naturally occurring signals are often the subject of study with 
many aspects regarding conservation and the environment.  Other natural signals such as 
the human voice have spectral properties that can be exploited.  For example, bio-metrics 
taken from the human voice can aid in automated speaker identification.  In fact, 
experiments on sampled human voice using the ABC algorithm, have demonstrated the 
utility of such a spectral characterization for quality assessment prior to speaker 
identification.  Thus, a large number of applications exist for automated signal detection 
as provided by algorithms such as the ABC method. 
 
 
2.0  Approach 
 

There are two aspects to the proposed research, namely:  i) motivation for 
selection of the ABC algorithm for pre-processing prior to signal detection, and ii) the 
needed quantitative performance analyses based on detection and false-alarm 
probabilities for appropriate input signal scenarios.  The latter aspect is particularly 
important, and the tasks performed to accomplish this goal are covered within this report.  
In this section, both aspects of the proposed research will be addressed, but the emphasis 
will be on the general description of the ABC algorithm and its use for signal detection. 
 
 
2.1  Uniqueness / Novelty of the ABC Approach 
 

As alluded to in Section 1, the problem of automated signal detection and 
parameter estimation has been the subject of research sponsored by the Air Force over a 
number of years.  A fundamental processing requirement for these resulting automated 
methods has been the generation of a time-frequency representation of the input signal 
(sequence).  Due to its speed, well-understood properties and effectiveness, the short-
term fast Fourier transform (FFT) is the most widely used transform to achieve a time-
frequency representation of the input signal, particularly where real-time 
implementations are desired and little a-priori knowledge is available.  However, other 
methods do exist.  For example, the Chirp-Z transform has also been employed in some 
of the previously sponsored research.  A separate identifiable area of relevant research is 
the investigation of these and many other proposed techniques for such representations, 
along with their application to automated signal detection and estimation of key signal 
parameters such as BW, CF and SNR.  For the ISR and CC applications, experimental 
evidence suggests that the FFT-based approach yields highly satisfactory input signal 
representations for use by the human operator.  In turn, the human operator can be 
effective at the signal detection and parameter estimation tasks in many scenarios.  
Therefore, the focus of this research is the automated interpretation of the resulting FFT-
based time-frequency display. 
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 In the previously sponsored research, proposed algorithms allowed for the 
averaging over time of power spectral estimates (from magnitude-squared FFT 
coefficients).  This is analogous to the averaging capabilities of most spectrum analyzers 
for signals that persist in time.  In effect, if spectral components remain relatively 
constant in amplitude at a given frequency for a period of time over which consecutive 
power spectral estimates are taken, then these estimates can be averaged together. 
Variations due to noise are thereby reduced, allowing for an enhanced probability of 
detection.  Similarly, if the averaging over frequency bins of signals that are relatively 
short in duration can be accomplished, detection can be enhanced.  Interestingly enough, 
even though this latter type of averaging is conceivable, this is not a typical capability in 
modern spectrum analyzers.  A possible reason for this is the fact that short duration 
signal events are easily  missed by a human observer.  Moreover, the spectrum analyzer 
may not even respond to the event, particularly when the signal is aperiodic.  Equipment 
developers have a clever solution to this problem which is effective in special cases.  
Because pulse-like signals can be repetitive (periodic) for many signal sources, the 
spectrum analyzer can be triggered by such events.  This allows for the analysis of 
otherwise unobservable signals by time averaging.  In contrast, automated signal 
detection can take advantage of averaging over frequency, when signals persist in 
frequency.  Given that short duration signals will have wider bandwidths, averaging over 
frequency can enhance the probability of the detection of short duration signals.  In terms 
of the probability of detection (Pd) and probability of false-alarm (Pf), a graph can be 
made relating the required input SNR versus number of estimates averaged, for a fixed 
Pd and some set of false-alarm probabilities.  A notional version of this is shown in 
Figure 2-1. 
 

 
Figure 2-1.  Notional set of performance curves for “persistent” signals. 
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When arithmetically averaging power, actual graphs indicate that there is a “knee in the 
curve” somewhere between 10 and 20 estimates averaged, such that the benefit of 
averaging is reduced when exceeding this range.  Averaging log-scaled power is also 
possible, and the utility of such averaging is addressed in the following results. 
 To gain a better appreciation for the benefits of averaging, some examples are 
presented.  In the discussions of Figures 2-2a) through 2-3c), the upper portion of the 
figures show an input spectrogram (log scale) with frequency (bin) along the x-axis, and 
time (segment) along the y-axis.  Each figure contains this spectrogram for comparison to 
detection results.  In the lower portion of the figures are shown detections resulting from 
simple thresholding.  Detections are shown in brighter shades, while dark regions 
indicate the absence of detections. The computer-generated input signal is known to 
consist of: a binary phase shift keyed (BPSK) component in the center of the band for all 
time segments; a stronger component of about 50 bins in width which turns on at about 
the 15th time segment and off at about the 48th time segment; a tone at around bin 330 for 
all time segments; a swept tone from bin 1 to bin 140; and 5 other tones of about 20 
segments in duration that step across the band.  Additive Gaussian noise is also present. 
 
 
 
 
 

 
Figure 2-2a) Detection without averaging. 
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Figure 2-2b) Detection with time averaging only. 

 
 
 

 
Figure 2-2c) Detection with frequency averaging only.  (Also represents detection results 

on “wide bandwidth”, first stage ABC output.) 
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Figure 2-3a)  Detection results on “medium bandwidth”, second stage ABC output. 

 
 
 
 

 
Figure 2-3b)  Detection on “narrow bandwidth”, third stage ABC output. 
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Figure 2-3c) Composite detection on all three ABC output stages. 

 
 
 Note that as seen in Figure 2-2a), detection results are difficult to interpret and in 
particular, the detected stepped tones are adjacent to numerous other detections and false-
alarms.  This makes it challenging, even with visual inspection by a human, to identify 
these tones.  Also, the BPSK signal at the center of the band tends to be broken into 
random detections and misses.  A trained human operator would be able to group these 
signal detections together, however, these detections would not be easily processed 
automatically.  Finally, note that the tone located near bin 330 causes detections that 
range over 40 or more bins.  This result may be “correct”, but important information is 
lost in the detection process.  In fact, if the strength of the BPSK signal is increased, the 
tone detections are indistinguishable within the BPSK signal detections. 
 When time averaging is employed, detection results can be improved as shown in 
Figure 2-2b).  False-alarms are reduced, and the detections caused by the BPSK signal at 
the center of the band are less random.  However, short duration wide-band events 
associated with the start and stop of each stepped tone are no longer detected.  Also, the 
detections caused by the tone near bin 330 have become indistinguishable from those 
caused by the BPSK signal. 

When frequency averaging is employed, detection results can again be improved 
as shown in Figure 2-2c).  False-alarms are reduced, and the detections caused by the 
BPSK signal at the center of the band are less random.  However, narrow-band events 
associated with the stepped tones are no longer detected.  Once again, the detections 
caused by the tone near bin 330 have become indistinguishable from those caused by the 
BPSK signal. 
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The advantages of ABC pre-processing prior to detection is graphically 
demonstrated in Figures 2-2c) through 2-3c).  The detection was performed on a 3-stage 
ABC process, and results are shown for each stage.  For stage 1, the threshold level is the 
same as that used for previous figures.  Note that in this example, because no time 
averaging was included in the first stage of the ABC process, detection results are the 
same as when using frequency averaging only, as seen in Figure 2-2c).  The detection 
threshold of any stage beyond stage 1 is set independently of all other stages.  The data 
input to the detectors beyond stage 1 is residual data, and thresholds are therefore set in 
dB relative to zero.  Results for these stages are shown in Figures 2-3a) and 2-3b).  In 
general, as the stage number increases, less frequency averaging is performed, and more 
time averaging is performed.  For the examples shown, stage 3 performs time averaging 
only.  Thus, stage 1 is useful for detection of “wide band” signals, stage 2 is useful for 
detection of  “medium bandwidth” signals, and stage 3 is useful for detection of  “narrow 
bandwidth” signals.  Figure 2-3c) shows all of the detection results overlayed on the 
same plot. 

It can be seen that generally speaking, there are fewer false-alarms and detection 
has been enhanced. These observed results are typical for the ABC process and provide 
motivation for further quantified analyses.  A Matlab implementation of the ABC process 
was used to generate the presented results (T. Hughes, AFRL-IF-RS-TM-1999-6, “A 
Signal Energy Detection Implementation,” December 1999).  This implementation has 
been leveraged to provide experimental evidence for verification of analytical results 
obtained during the conduct of the present research. 
 
 
3.0  Existing Results 
 

In this section, background is given on relevant research already existing in the 
literature. 
 
 
3.1  Directly Relevant Literature 
 

Because the ABC technique operates on spectral amplitude data that has been 
logarithmically compressed, the outputs of the linear filter processes are related to the 
geometric mean.  It is also important to note that as a pre-detection process, the ABC 
technique will be assessed based on false-alarm rates for a given probability of detection 
and input SNR.  Particularly relevant publications include: 
 
[1] Rik Pintelon, et. al., “The Geometric Mean of Power (Amplitude) Spectra has a Much 
Smaller Bias than the Classical Arithmetic (RMS) Averaging,” IEEE Transactions on 
Instrumentation and Measurement, Vol. 37, No. 2, June 1988; 
 
[2] G. Corsini, et. al., “Cramer-Rao Bounds and Estimation of the Parameters of the 
Gumbel Distribution,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, 
No. 3, July 1995; 
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[3] Filippo Attivissimo, et. al., “A Study on Nonlinear Averagings to Perform the 
Characterization of Power Spectral Density Estimation Algorithms,” IEEE Transactions 
on Instrumentation and Measurement, Vol. 49, No. 5, October 2000. 
 
Reference [1] discusses the statistical properties of the geometric average of power 
spectra compared to the more traditional root-mean-square (RMS) average.  It represents 
an original proposal that the geometric mean has a much smaller bias than the RMS 
estimate, for the power spectra resulting from use of the discrete Fourier transform 
(DFT).  The discussions in Reference [3] are supportive of the findings in [1], and also 
indicate that estimates can be produced that have a reduced variance by using the 
geometric average.  Reference [2] discusses maximum likelihood (ML) estimates of the 
parameters of the Gumbel distribution which result at the output of logarithmic amplifiers 
used in some radar systems.  Because the logarithmically compressed amplitude spectra 
from the output of the DFT are also Gumbel distributed when the input is noise-only, 
results presented in [2] also apply here.  New findings in this report will be presented in 
the context of these and related existing findings. 
 
 
3.2  False-Alarm Theoretical Considerations 
 

The DFT- or FFT-based power spectral estimate, sometimes referred to as the 
periodogram, is considered to be a non-parametric approach.  This is consistent with the 
notion of blind signal detection and estimation.  However, some assumptions are 
appropriate for the purpose of developing a mathematically tractable analysis.  Additive 
white Gaussian noise (AWGN) is assumed at the input, although the FFT process and the 
central limit theorem would allow us to loosen this requirement.  Note that a false-alarm 
occurs when noise energy is declared to be signal energy.  Therefore the false-alarm rate 
can be characterized by the distribution of the noise.  In the noise-only case with a zero-
mean Gaussian input of variance 2

tσ , the magnitude-squared data from the periodogram 
bins are Exponentially distributed as 
 

2
0

/

0

   ,0   ,1)( 0
t

x
X xexp σµ

µ
µ ∝>= −  .                                     (3-1) 

 
The constant of proportionality between µ0 and σt is determined by the FFT size and the 
window that is used.  (See also [4].)  The parameter µ0 is assumed to be unknown.  The 
nonlinear transformation, Y = 10log10(X), results in Gumbel distributed data with 
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Expressions for the expected value of Y, E(Y), and the variance of Y, V(Y), are known; 
V(Y) is a function of β only, which in our case, is constant!  Restated, V(Y) is not a 
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function of σt > 0 .  This is a rather interesting result!  The magnitude squared and 
logarithmic transformations on the complex valued spectra transformed the variables 
from Gaussian distributions with a known mean of zero, to Gumbel distributions with a 
known scale parameter and thereby a known variance.  Thus, it is now the mean of the 
resulting Gumbel distribution which gives us knowledge of the input noise power.   

Numerical integration on the Exponential density function of (3-2) to examine the 
effects of logarithmic scaling serves to confirm the above results.  Numerical estimates of 
both E(Y) and V(Y) are also consistent with theoretical results.  Figure 3-1 shows 
example Exponential distributions and resulting Gumbel distributions.  Note that the x-
axis range for the Exponential distribution examples has increased by a factor of 10 when 
µ0 increased by a factor of 10.  The corresponding Gumbel distribution shows no change 
in variance.  The increase in µ0 translates to an increase in the location parameter to 
10log10(µ0).  Also note that the first “tail” in each of the curves representing the Gumbel 
distributions are at increased levels.  This implies an increased probability for events in 
these ranges. 

As it turns out, the Gumbel distribution has been known to the scientific 
community to be particularly useful for the modeling of important events occurring in 
nature.  Because the Exponential distribution is a special case of the Weibull distribution, 
the Gumbel distribution is a member of the log-Weibull set of distributions, which are 
also referred to as Fisher-Tippet distributions and Extreme Value distributions.  More 
specifically the Gumbel distribution is also called the Extreme Value Type I distribution.  
This latter name is more descriptive of what the distribution can model.  It is used to 
describe various extreme condition phenomena such as floods, wind gusts and energy 
release during earthquakes.  This appears to be an appropriate description of spectral 
events in the periodogram when the input is zero-mean Gaussian noise.  Shown in Figure 
3-2 is a log-scaled periodogram of zero-mean Gaussian data.  Note the arrows pointing to 
some of the “extreme value” events which are predicted by the Gumbel distribution. 
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Figure 3-1.  Examples of the effects of logarithmic compression on data distribution. 
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Figure 3-2.  Results from a log-scaled periodogram. 
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3.3  Parameter Estimation for Achieving False-Alarm Rates 
 
 In order to automatically characterize the spectral estimate from the periodogram, 
receive-system calibration and/or parameter estimation will be required to achieve a 
specified false-alarm rate.  With this in mind, the results of [2] apply.  (The ML estimates 
for the parameters of the Gumbel distribution are also given in [5].)  Note that interest in 
parameter estimation differs from performance evaluation using ROC curves.  The latter 
is concerned with predicting or observing detection rates for a range of thresholds, and 
therefore for a range of false-alarm rates, at given SNR values.  The former is the 
practical issue of estimating the noise power for the purpose of setting detection 
thresholds. 
 For the previously specified logarithmic transformation, the scale parameter 
estimate is )(log10ˆ

10 e== ββ .  However, in some applications the exact nature of the 
logarithmic compression may not be known.  An example of this is the use of logarithmic 
amplifiers in radar systems.  The ML estimates in this case become 
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Note that the K samples, yi, can be from either consecutive times, consecutive 
frequencies, or both.  The scale estimate in (3-3) must be solved in an iterative fashion, 
and used in (3-4) to then estimate the location parameter.   

The above estimation technique is appropriate when the K samples are known to 
be from a noise-only input.  In many practical scenarios, a signal component may exist in 
a substantial portion of the samples.  In this case, the rank-select-threshold  (RST) 
method of noise estimation can be used.  In this method, the content of the bins from a set 
of periodograms are sorted in ascending strength, and the strength of the bin at around the 
pth percentile is selected to estimate the noise.  The fraction p is some appropriate 
percentage chosen based on the number of noise-only samples expected. 
 It should be noted that the estimate of Equation (3-4) is known to have a bias, but 
is asymptotically unbiased as K increases.  An expression for this bias is given in [2] and 
results are shown in Figure 3-3 for values of K of interest in this report. 
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Figure 3-3.  Bias on the estimate of the location parameter, 0µ̂ ′ . 

 
For K = 1, E(Y) = µ0 + 0.57721β (the constant 0.57721 is Euler’s number).  Thus the bias 
in this case is 0.57721β = 2.5068 dB. 
 
 
3.4  Signal Strength Estimation in the Presence of Noise 
 
 Based on expressions given in Proakis [6], distributions resulting from the 
arithmetic averaging of spectral power can be given as 
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.  Here, I[K-1] is the modified Bessel function of the first 

kind.  The squared amplitude, 2
ia , is the sum of the squared means of the real and 

imaginary components  of the complex value obtained from bin i of the K selected FFT 
bins.  The real and imaginary components are assumed to be Gaussian with variance σ2 = 
µ0/2.  Note that r  can be considered as the average signal-to-noise power ratio over the 
K independent samples.  As should be expected, Equation (3-5) simplifies to Equation (3-



 15

1) when K = 1 and 0=r .  The above expressions allow for the evaluation of the 
traditional RMS method of signal detection as will be described in Section 4. 
 In [1] the interest is to obtain an accurate estimate of the signal strength in the 
presence of noise when many thousands to a few million samples are available.  It is 
recognized in the reference that when RMS averaging (i.e., arithmetic or linear 
averaging) is used to enhance the estimate, a bias is present that is much larger than when 
a non-linear averaging method is used. Specifically, the non-linear averaging technique 
used is the geometric mean resulting from the averaging of log-scaled power spectral 
magnitudes.  Note that as previously presented for linear averaging, [2] provides an 
expression for the bias in the noise-only case such that the bias can be accounted for.  
Unfortunately, no such expression for the signal-plus-noise case is currently known to the 
author of this report.  However, it can be inferred that such an expression will likely be a 
function of SNR, and will decrease as the number of estimates averaged, K,  increases.  
Given that the bias is considered to be significantly larger when the arithmetic average is 
used, a particularly large bias will be present for the range of values for K of interest in 
this report. 
 
 
4.0  Research Results 
 

As more a-priori information regarding the input signal is available, this 
information can often be used to design a more mathematically optimal detection system.  
As a simple example, if a known waveform is to be detected in the presence of additive 
Gaussian noise, typically a matched filter or correlation receiver can be employed.  In 
addition to being effective, such systems should:  i) be readily implemented due to low 
complexity; ii) be computationally stable by being robust to small system parameter 
changes; iii) require affordable computational resources; iv) allow for ease of use by an 
operator and/or ease of integration into systems; and v) give timely results.  Where less a-
priori information is available, adaptive systems have been successfully employed, with 
trade-offs in the above desired system characteristics. 
 It’s often the case that input signals of interest contain many signal components 
with little associated a-priori information.  In fact, the acquisition process itself will result 
in a distorted representation of the original analog signal due to effects such as filtering 
and quantization.  This leads to a substantial interest in non-parametric spectral 
estimation techniques.  The FFT-based estimation technique is particularly attractive in 
the context of meeting the desired system characteristics. 
 Note that filtering (e.g., averaging of consecutive spectral estimates) can be very 
beneficial, but because of the lack of information regarding the input, it can also have 
unintentional and detrimental effects.  The primary focus in this report is the detrimental 
effect filtering can have on the asynchronous detection of signal components.  All time 
segments and frequency bins of the spectrogram are candidate locations for signal 
energy.  Thus filtering over time or over frequency will reduce the resolvability of 
locations with noise energy in a neighborhood of locations near those of signal energy.  
As SNR increases, filtering will cause a significant number of locations in the 
neighborhood of a location containing signal energy to be falsely identified as containing 
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signal energy.  Depending on the filter impulse response, a de-sensitization can also 
occur.  To address these concerns, amplitude compression is considered prior to filtering. 
 
 
4.1  Nonlinear Processing prior to Averaging 
 
 Under the premise that filtering in the presence of nearby signals becomes a 
mechanism for misclassification, the system of Figure 4-1 is considered.  Of interest are 
those functions, g, which operate on the magnitude-squared spectral values, X, such that 
averaging by the linear filter will result in enhanced detection performance.  In the figure, 
ki represents the kth frequency bin of the ith time segment.  The output of the threshold 
detector is the binary detection grid, )( ikB , which contains a 1 in locations where signal 
energy is detected and a 0 otherwise.  
 
 
 

)(⋅g )(⋅l 0
1

→<
→≥

η
η)( ikX )( ikY )( ikZ )( ikB

Compression
Function

Linear
Filter

Threshold
Detector  

Figure 4-1.  An automated blind signal detection system. 
 
 
The following interrelated properties of a continuous compression function g can be 
identified:  
 
Property 1.  g(x) must be one-to-one, and onto as a map from the domain 0>x  to the 
range 0>x  or +∞<<∞− x . 
 
 
Property 2.  g(x) must be strictly increasing in the domain 0>x .  This implies that g is 

one-to-one and has an inverse, and implies that 0>
dx
dg  for 0>x . 

 

Property 3.  g(x) must be concave down in the domain 0>x .  This implies that 02

2

<
dx

gd  

for 0>x . 
 

Property 4.  g(x) minimizes the positive relative difference, 
)(

)()(

b

ab

xg
xgxg − ,    ba xx <<0 . 
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These properties are required for a continuous compression function that minimizes 
misclassifications that occur due to filter transients. 
 Properties 1 through 3 motivate the consideration of functions such as 

p
p xxg /1)( = , where p > 1.  From Property 4, the value of p is sought which minimizes 

p
ba xx /1)/(1− .  The solution is +∞=p , however, this leads to the trivial case where 

0lim)( /1 ==
∞→

p

p
xxg .  This result does not satisfy the remaining properties, 1 through 3. 

 In Section 3 it has been observed that logarithmic compression prior to averaging 
produces useful results.  This motivates the consideration of the function g(x) = ln(x), the 
natural log of x.  It is easily shown that this function satisfies Properties 1 through 3.  To 
make relevant observations regarding Property 4, it is recalled that 
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Manipulation of Equation (4-1) results in 
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is minimized as +∞→p .  This shows that for this set of functions, )1()( /1 −⋅= p

p xpxg , 

the function )1(lim)(lim)ln()( /1 −⋅===
∞→∞→

p

ppp
xpxgxxg  is a function from the set that 

minimizes the positive relative difference of Property 4. 
Well known properties of the logarithm can be applied to further show that bases 

other than base e can be chosen.  Note that nothing has been assumed regarding the 
distribution of the positive real random variable X in the derivation of the above result.  
This does not imply, however, that all signal scenarios will result in the conclusion that 
logarithmic compression should be used.  Analytical and experimental analyses that 
follow will yield further insight into performance issues.  The special case to be 
considered is the moving average filter, which in combination with logarithmic pre-
compression, results in the geometric average.  To be more general, functions from the 
set 

 
1  ),()( /1 >−⋅= pcxfxg p

p                                               (4-3) 
 
can be considered, where f  is some scaling factor that is a function of p only, and c is a 
constant.  From this set, aspects of both logarithmic compression and square-root 
compression (f = 1, c = 0, p = 2) will be considered and compared to the RMS average. 
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4.2  Test Scenario 
 
 The determination of an appropriate test scenario for the performance evaluation 
of automated blind signal detection processes is a non-trivial task.  The difficulty in 
defining a test scenario is largely due to the fact that little is assumed known about the 
input sequence.  However, there are reasonable assumptions that can be made which both 
allow for a meaningful performance evaluation and lead to mathematically tractable 
analyses.  As previously indicated, the input is assumed to consist of signals in additive 
white Gaussian noise.  Because the detection processes considered herein are discrete-
time processes, the term “white” refers to the fact that the FFT will produce frequency 
bins that contain noise components with uniform power over frequency (with the 
exception of the first bin and a bin near the sampling frequency for real inputs).  Thus the 
complex spectral coefficients are also Gaussian and independent, leading to the density 
function for spectral power given in Equation (3-5). 
 With the statistical nature of the spectrogram established, there remains a need to 
select the deterministic signal components of the spectrogram to be used for performance 
testing.  A logical candidate is the delta function (in this case an impulse in the 
spectrogram) which is particularly effective at evaluating filter responses.  Because 
averaging over time segments and over frequency bins is a simple filtration process, an 
impulse in varying levels of noise could be considered.  This could potentially help in the 
assessment of misclassification due to filter transients.  However, it can also be noted that 
the matched filter processing of such a spectrogram would be one in which no averaging 
is employed.  This would render all pre-detection processes which employ averaging, as 
sub-optimal techniques.  This is contrary to the reason for averaging in pre-detection 
processes, namely, to enhance the probability of detection of persistent signals.  Thus 
another fundamental assumption for the research herein is that persistence in time, 
frequency or both is a predominant characteristic of the unknown input signal 
components. 
 Based on the above considerations, the proposed deterministic component of the 
test spectrogram is that of a uniform amplitude rectangular pulse with duration K 
samples.  This pulse can persist for K time segments or K frequency segments, but at 
least K samples containing noise-only exist before and after the samples containing the 
pulse.  Whether the pulse is over time or over frequency will not be relevant in the results 
presented; therefore the pulse will more generally be referred to as being persistent for K 
consecutive samples.  It is important to note that the locations of such pulses within the 
spectrogram would be unknown.  The test scenario is therefore considered to be an 
asynchronous spectral pulse.   However, when comparing experiments with analytic 
results, there is no need to randomize the locations of simulated pulses if detections and 
false alarms are properly accounted for.  In order to make detection performance 
assessments, the concepts of detections and false alarms must first be better defined. 
 If the power values from the spectrogram are not averaged prior to threshold 
comparison and detection classification, determining detection and false alarm rates is 
straightforward.  A frequency bin containing signal-plus-noise is defined to be class “1”, 
and a bin containing noise-only is defined to be class “0”.  Declaring a “1” when the bin 
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is defined to be from class “1” is a correct-detection (or simply referred to as a detection), 
and declaring a “1” when the bin is defined to be from class “0” is a false-alarm.  The 
difficulty in defining classes arises when filtering is employed prior to detection.  
Filtering does not directly reduce the number of samples for which a class determination 
is required.  (In fact, the ABC pre-detection process increases the number of threshold 
comparisons needed by a factor of M, the number of stages.  See also Appendix A.)  
Rather, filtering has the effect of delaying the output relative to the input.  If an analysis 
window of K consecutive samples of a filtered spectrogram is considered, there is a 
correspondence to the pre-filtered spectrogram that allows for classes to be defined.  The 
sample delay, d, of the moving average filters considered herein is found to be 

2/)1( −= Kd .  More generally, any symmetric finite impulse response (FIR) filter of 
order K-1 (i.e., with K coefficients) has a sample delay of d = (K-1)/2.  By taking into 
account this sample delay, classes for the samples at the filter output can be defined 
based on the classes of the filter input samples.  Table 4-1 summarizes these class 
definitions as an analysis window of size K is slid over a pulse that persists for K 
samples. 
 
 

 
 

Case 

Window Samples 
Containing  

Signal-Plus-Noise 

Window Samples 
Containing Noise-Only 

 
Class Definition 

1 K (odd) 0 1 
2 K-1 1 1 
3 K-2 2 1 
.   .       .         . 
.   .       .         . 
.   .       .         . 

d+1 d+1 d=(K-1)/2 1 
d+2 d d+1 0 
d+3 d-1 d+2 0 

 .   .       .         . 
 .   .       .         . 
 .   .       .         . 

K 1 K-1 0 
K+1 0 K 0 

 
Table 4-1.  Class definitions for a moving average filter of order K-1. 

 
 Table 4-1 enumerates class definitions for each sample output generated as the 
average is moved over input samples.  The first row of the table is the case where the 
analysis window is aligned with the pulse and represents the matched filter case.  The 
rows progress with fewer signal-plus-noise bins and more noise-only bins being averaged 
together.  This process is based on the “shift-multiply-add” description of discrete-time 
convolution.  The last row also represents the matched filter case, but for the noise-only 
input.  Note that by considering values of K that are odd, the ambiguous case is avoided 
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where an equal number of signal-plus-noise and noise-only bins are averaged together.  It 
also allows for the cases to be paired for detection and false-alarm calculations.  For 
example, case 1 can be paired with case K+1 to represent ideal (matched filter) 
performance.  Likewise, case 2 can be paired with case K, case 3 can be paired with case 
K-1, and so on.  These latter pairings represent the adverse effects of filtering where 
performance is degraded relative to the matched filter.  Table 4-2 shows the list of pairs 
that are considered.  By averaging together the performance results of the ensemble of 
pairs, an expected degraded performance is obtained for a given value of K.  
Alternatively, the density functions representing class “0” can be averaged together for 
overall false-alarm rate calculation, and the density functions representing class “1” can 
be averaged together for overall detection rate calculation.  Thus each of the cases are 
considered to be equally likely to occur, consistent with the asynchronous nature of the 
spectral pulse. 
 

Case Pairs 
{1, K+1} 

{2, K} 
{3, K-1} 

           . 
           . 
           . 

{d+1, d+2} 
 

Table 4-2.  Case pairings for ROC curve generation. 
 
 
 
4.3  Analytic Performance Evaluation Preliminaries 
 

To facilitate the generation of ROC curves for performance evaluations and 
comparisons, the density function in Equation (3-5) is transformed using )ln(xx =

)
.  The 

resulting density function is 
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.  Note that ROC curves for the arithmetic averaging 

of magnitude-squared spectral values can be generated using either Equation (3-5) or 
Equation (4-4).  However, the term I[K-1] in the equations can cause severe computational 
instabilities when numerical integration is used to evaluate detection and false-alarm 
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probabilities.  To address this problem, the terms bracketed in Equation (4-4) are 
converted to an alternate form. 
 An integral form of the modified Bessel function of the first kind is 
 

∫ −=−

π
θθθη

π
η

0]1[ )]1cos([))cos(exp(1)( dKI K ,                          (4-5) 

 
when K-1 is integer valued.  Because K is integer valued herein, an expression for the 
bracketed terms in Equation (4-4) is 
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By using Equations (4-4) and (4-6) to numerically evaluate the relevant density 
functions, computational stability is achieved without the need to resort to more involved 
non-analytical techniques such as Importance Sampling (IS).  For the results herein, 
values of interest are 20≤K  and 10≤r .  Note that in Equation (3-5) and therefore in 
Equation (4-4), the parameter 00 >µ  can be set to 1 for convenience.  A step size of 1e-3 
over the range 1040 ≤≤− x

)
 and rectangular integration were employed for the integral 

of Equation (4-4).  With a step size of 1e-2 and by employing trapezoidal integration for 
the integral of Equation (4-6), overall numerical results were found to be quite accurate.  
The method chosen to test accuracy was to check the numerical integration of the density 
functions over the range using rectangular integration.  Because the interest is in false 
alarm rates at about 1 per thousand, it was verified that the density functions integrate to 
1 with at least 6 decimal places of accuracy.  In fact, the results were typically found to 
be greater than 10 places of accuracy.  Thus the combined approach of first converting to 
natural-log scale and recognizing the relationship in Equation (4-6) becomes a rather 
unique and effective way of overcoming computational accuracy problems for the 
required numerical integrations. 
 To generate the ROC curves for the geometric averaging of magnitude-squared 
spectral values, Equations (4-4) and (4-6) can be used to derive the appropriate density 
functions.  The method used herein involved first setting K = 1 in the equations, and 
subsequently employing numerical convolutions.  Two cases can be identified, one with 
an arbitrary parameter 100 ≤< ir  representing the signal present case, and one with 

0=ir  representing the noise-only case.  For both cases, the relevant density function 
becomes 
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with },...,,{ 321 Krrrrr =v .  For the specific scenario where uniform weighting is used, ir  is 
either zero (noise-only) or some constant SNR.  Note that because of the dependence of 
the modified Bessel function, I[K-1], on the ratio ir , the convolution process does not allow 
for expression simplification by the use of the average, r , as a parameter.  Also note that 
scaling Equation (4-8) by the factor 1/K to produce the average rather than the sum, will 
have no affect on the ROC curves subsequently generated. 
 
 
4.4  Analytic Performance Results 
 

The input test scenario of Section 4.2 is now used for performance comparisons.  
A detector employing arithmetic averaging of power resulting in the density function of 
Equation (4-4), is compared to a detector employing geometric averaging resulting in the 
density function obtained from Equation (4-4) with K = 1 and the convolution process of 
Equation (4-8).  Results are shown in Figures 4-2a) through 4-4b).  Note that a false 
alarm probability that is commensurate with the probability of a miss (1 minus the 
probability of a detection) will be referred to as a “large” false alarm probability.  In 
demodulation scenarios false alarm and miss errors are both considered as bit errors.  
Detection thresholds are set to achieve an equal number of false alarms and misses.  Thus 
in a relative sense, demodulation performance is measured at large false alarm 
probabilities.  This is in contrast to radar, sonar and automated signal detection processes 
such as the ABC algorithm, where the probability of a false alarm must be small in an 
absolute sense.  For these processes, false alarm probabilities on the order of 1 or less per 
thousand may be of interest. 

An SNR per bin (sample) of 1 is first considered.  As seen in Figures 4-2 a) and 
b), there is a slight but distinct performance advantage in using arithmetic averaging 
relative to geometric averaging at large false alarm probabilities.   The figures also show 
the degraded performance expected because of transients associated with the averaging 
filter.  Arithmetic averaging under degraded conditions still outperforms geometric 
averaging under degraded conditions, at these large false alarm probabilities.   
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Figure 4-2a).  Pulses persistent for K = 3 consecutive samples at SNR = 1, large Pf range. 
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Figure 4-2b).  Pulses persistent for K = 7 consecutive samples at SNR = 1, large Pf range. 
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Figure 4-3a).  Pulses persistent for K = 3 consecutive samples at SNR = 1, small Pf range. 
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Figure 4-3b).  Pulses persistent for K = 7 consecutive samples at SNR = 1, small Pf 

range. 
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Figure 4-4a).  Pulses persistent for K = 3 consecutive samples at SNR = 7, large Pf range. 
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Figure 4-4b).  Pulses persistent for K = 3 consecutive samples at SNR = 7, small Pf 
range. 
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However, when considering small false alarm probabilities as seen in Figures 4-

3a) and 4-3b), results are significantly different.  It can be seen that both arithmetic 
averaging and geometric averaging suffer from degraded performance due to filter 
transients.  In this scenario, degraded geometric performance is better than the degraded 
arithmetic performance.  It is also apparent that as K is increased from 3 to 7, under 
degraded conditions, geometric averaging continues to outperform arithmetic averaging. 

For reference, it is noted that without averaging, the detection probability is about 
.02 for a false alarm probability of 1e-3 at this SNR.  Based on the expected degraded 
performance shown in the figures, this would seem to imply that there is no advantage to 
either type of averaging.  The expected degraded performance is about .02 to .025 in the 
given scenario.  What is not readily apparent in the figures is the fact that the ideal 
performance will be achieved at some sample.  Ideal performance is defined herein as the 
matched filter case, described in Section 4.2.  Also, near ideal performance will be 
achieved for a significant number of samples, when K is greater than 3. 

In Figures 4-4a) and b), the SNR per bin has been increased to 7 and K is 3.  As 
seen in Figure 4-4a), the ideal detection probability is essentially 1 for both arithmetic 
and geometric averaging, for this scale of false alarm probabilities.  Note that for false 
alarm probabilities below 0.2, the degraded performance of the geometric average is 
better than the degraded performance of the arithmetic average.  For small false alarm 
probabilities as shown in Figure 4-4b), results are more dramatic.  Degraded geometric 
performance is nearly 100 percent better than the degraded arithmetic performance.  It is 
expected that as SNR increases, transients due to average filtering will be more 
pronounced.  Geometric averaging then becomes particularly beneficial. 

Once again for reference, it is noted that without averaging, the detection 
probability is about 0.57 for a false alarm probability of 1e-3 at SNR = 7.  This is 
somewhat better than the degraded geometric average performance of about 0.49.  
However, it is again noted that ideal performance will be achieved at some sample.  
Based on the figure, that detection performance is about 0.98. 
 
 
4.5  Experimental Performance Results 
 
 To help confirm previously presented analytic results, experiments have been 
conducted.  Experiments consisted of Monte-Carlo computer simulations of signals of 
interest and detection results.  Through simulations, insight is also gained into an 
alternative detection process, where square-root compression is employed in the process 
of Figure 4-1.  Representative results are given. 
 Shown in Figure 4-5 is a comparison of experimental and theoretical performance 
results, for K = 7 and an SNR of 1.  Due to the length of time associated with the 
simulations, comparisons are limited to large values of probability of false alarms.  Note 
that experiments are in agreement with theory.  Several other selected scenarios also 
served to confirm the analytic results. 
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Figure 4-5.  Pulses persistent for K = 7 consecutive samples at SNR = 1.0, large Pf range. 
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Figure 4-6.  Pulses persistent for K = 7 consecutive samples at SNR = 10, large Pf range, 

degraded performances at a sample delay of 3. 
 
 



 28

 The analyses presented in Section 4.1 also served as motivation to consider 
employing the square-root as a compression function.  Simulations were easily modified 
to include square-root compression of the magnitude-squared spectral values.  The 
experimental ROC result for a selected scenario is shown in Figure 4-6.  The results 
presented correspond to case 4 of Table 4-1, where 4 samples containing signal-plus-
noise were averaged with 3 samples containing noise-only (and K = 7).  An SNR of 10 
was selected for presentation.  The significant observation is the fact that square-root 
compression before averaging, also referred to in the figure as the “root-arithmetic” 
average, performs much better than both the arithmetic and geometric averages for this 
scenario.  This is consistent with the fact that most envelope demodulation schemes in 
practice use the square-root of magnitude-squared data, prior to filtering. 
 In Figures 4-7 a) and b) is shown a comparison between experimental and 
theoretical performance results for the previous example of Figure 4-4a), where an SNR 
per sample of 7 is considered, and K = 3.  Note the close agreement between theory and 
experiment for the arithmetic and geometric averages.  Also included is the experimental 
result for root arithmetic averaging.  Again it can be seen that the root-arithmetic average 
performs much better than both the arithmetic and geometric averages for this scenario, 
when demodulation is of interest.  However, initial experimentation of the ABC pre-
detection process with root-arithmetic averaging employed did not yield particularly 
useful results.  There did appear to be an advantage over arithmetic averaging, but visual 
comparisons of the input spectrogram and the detection results indicated that geometric 
averaging gave much better results.  This is an area that will require further research. 
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Figure 4-7a).  Pulses persistent for K = 3 consecutive samples at SNR = 7, large Pf range; 

experimental and theoretical results for expected degraded performances. 
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Figure 4-7a).  Pulses persistent for K = 3 consecutive samples at SNR = 7, large Pf range; 
experimental and theoretical results for expected degraded performances.  (Zoom view.) 

 
 
 
5.0  Conclusions 
 

The Adjustable Bandwidth Concept (ABC) technique (U.S. patent 5,257,211), has 
been presented as a pre-detection process for discrete-time signals.  The technique has 
previously been found to be quite useful for the off-line processing of collected signals, 
including audio, communications and radar signals.  The work herein has been necessary 
to better understand the quantitative performance aspects of the ABC process before 
further use and before committing to hardware-based real-time implementations. 

The intended application of the ABC process is to allow for both averaging over 
time and over frequency, when signal components persist in these domains.  
Generalizations to other domains such as the spatial domain may be possible, however, 
this was not investigated in this research.  Little or no a-priori knowledge is assumed 
regarding the input signal and its components. 

Toward the goal of objective performance evaluation of the process, receiver 
operating characteristic (ROC) curves have been generated for the general class of 
automated spectral analysis tools that employ the FFT and logarithmic compression of 
the magnitude.  Other compressions have been considered, however, mathematical 
evidence given herein along with recent literature suggests that logarithmic compression 
results in particularly good performance. 

In developing a methodology for performance evaluation, some key results have 
been obtained that may prove useful in a wide variety of signal detection systems.  First, 
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a test scenario has been identified which allows for the fair comparison of competing 
detection methods.  This scenario consists of a set of uniform pulses that occur in a 
random fashion in the test signal, such that the location of the pulse (time or frequency 
location) is unknown.  The asynchronous nature of the pulses forces the consideration of 
an important problem that arises in blind signal detection systems, namely, 
misclassifications due to filtering.  While it is true that filtering is beneficial, if not done 
properly, filtering results in pulse spreading leading to false-alarms and misses that occur 
in the neighborhood of the pulse. 

A second key methodology result is a formulation of the statistical properties of 
the spectral data, that leads to a computationally stable numerical calculation of false 
alarms and detections.  This avoids the need for time consuming simulations that often 
occur when Monte-Carlo analyses are employed. 
 
 
5.1  Future Work 
 

In this sub-section, some ideas are presented for future work that can be done to 
both further the application of the ABC process, and to gain additional insight into 
performance potential. 
 
 
5.1.1  Signal Grouping 

 
As described, the ABC algorithm is a pre-processing step prior to detection.  

However, even with great detection results, an interpretive step is still required.  For 
example, the various detections that result are obtained on a bin-by-bin and segment-by-
segment basis.  Methods of combining adjacent detections, and possibly even non-
adjacent detections, are required to automatically identify signal components within the 
log-spectrogram (see also [7]).  It may be that magnitude and phase information, along 
with some a-priori knowledge of input signal structures can help in this regard.  Another 
possiblity is that image processing concepts/techniques may apply, given that visual 
inspection by a human can result in good detection combinations. 
 
 
5.1.2  Real-Time Implementation 
 

Favorable off-line experimental results have caused an interest in creating real-
time implementations.  This can expedite experimental performance evaluations, and 
allow for a wider variety of signal tests.  The main computational components of the 
ABC process are the FFT, conversion to magnitude, and logarithmic compression.  All 
computational components are readily implemented or are available in commercial DSP 
products. 
 
5.1 3  Non-linear Compressors 
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Although this report has focused on the logarithmic compressor prior to 
averaging, other compression functions are conceivable and potentially useful.  Initial 
experimental results regarding the use of square-root compression indicated a poorer 
performance relative to the logarithmic compression.  However, ROC curves should be 
generated to confirm these results, particularly at low false-alarm probabilities.  Also, for 
real-time implementations, it may not be possible to achieve exact logarithmic 
compression at desired speeds.  This may lead to consideration of piece-wise 
differentiable functions that approximate the performance of the logarithmic compressor. 
 
 
5.1 4  Fusion of Detectors 
 
 Recent literature suggests that the fusion of a set of detection processes that 
operate on the same data, can potentially enhance ROC performance [8].  There may be 
merit in considering such a technique with the ABC process.  In particular, useful 
compressors can be chosen to generate a parallel set of ABC processes, each with a 
unique compressor.  Furthermore, it may be beneficial to have a parallel set of ABC 
processes, each with a specific set of system parameters to allow for various input 
scenarios.  Efforts would need to focus on identifying useful ABC configurations and 
methods of combining (fusing) detection results. 
 
 
5.1.5  SNR Estimation 
 
 For automated blind signal detection, an SNR estimate is needed is to set the 
thresholds properly for a particular detection performance.  During the conduct of the 
research, it was found that while arithmetic averaging results in a biased estimate of the 
input signal strength, geometric averaging produces a reduced bias.  As a result, 
arithmetic averaging tends to estimate the signal-plus-noise energy, while geometric 
averaging tends to estimate signal energy.  This leads to the idea of forming a 
combination of both estimates to arrive at an SNR estimate.  The potential advantage of 
this method is that traditional SNR estimates rely on identifying regions of the 
spectrogram that contain noise-only.  However, these regions are unknown in many 
practical scenarios.  This new technique may be useful, particularly where persistent and 
uniform-strength components exist in the input signal.  (See also [9], [10].) 
 
 
5.1.6  Relationship to Other Processes 
 
 Literature searches have resulted in the identification of several research areas 
that appear to be relevant to the current research.  These include the concepts of 
homomorphic processing (see also Appendix B), and myriad filters [11].  These and other 
processes such as time-frequency transformations (Gabor, Wigner-Ville, etc.) warrant 
further study. 
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Appendix A: The Adjustable Bandwidth Concept (ABC) Algorithm 
 

Digital signal processing (DSP) techniques have been developed which use FFT-
based power spectral density (PSD) estimates and which average either over time, or over 
frequency.  The ABC algorithm allows for both time and frequency averaging in a unique 
fashion to be described.  It will become apparent that the ABC algorithm is a linear filter 
process applied to spectral data, and is therefore related to the signal cepstrum. 

In the current ABC approach, the spectrogram, a time-frequency representation, is 
accomplished using the short term FFT.  To generate the spectrogram, the input signal to 
be analyzed is partitioned into N-point (i.e., N-sample) time segments, where N is a 
power of 2.  More specifically, the log-spectrogram is used by the ABC algorithm.  The 
log-spectrogram is formed by logarithmic compression of the magnitude of the 
coefficients of each of the FFT frequency bins.  The time segments can be non-
overlapping for computational efficiency, or overlapped for enhanced time resolution.  
Likewise, various data windows can be used to control spectral leakage. The resulting N-
PSD estimates2 are input to the ABC process as shown in Figure A-1. As each time-
consecutive N-point PSD is input, an N-point output is available at each stage.   
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Figure A-1.  The ABC algorithm and representative outputs. (U.S. Patent 5,257,211) 

 
 
 Each stage of the M-stage ABC process is similar.  In stage M, however, there is 
no need for averaging over frequency; in this stage only averaging over time is performed 
as represented by the N-point delays.  The summing nodes are implemented as vector 
sums.  A single N-point delay in any given stage yields the moving average of 2 

                                                 
2 Just as with a human operator, the performance of the ABC algorithm is directly affected by the quality of 
the spectrogram.  The selection of parameters related to the input spectrogram is an external process to the 
ABC algorithm. 



 33

consecutive PSD estimates; 2 N-point delays yield the moving average of 3 consecutive 
PSD estimates, and so on.  Averaging over frequency is accomplished in the units labeled 
as LPF1, LPF2, etc.  These are symmetric finite impulse response (FIR) filters which are 
generally low-pass in nature.  The number of frequency-consecutive bins that are 
averaged together is controlled by the order of the filters, which can be up to some 
fraction of N.  For a typical configuration, in stage 1 more averaging over frequency is 
performed, rather than averaging over time.  It is also typical that averaging over 
frequency decreases with increasing stage number, and averaging over time increases.   

A key aspect of the algorithm is the use of unit-gain symmetric FIR filters for 
effecting the averaging over frequency.  Because the data contained in consecutive 
frequency bins is treated by the filter as if it were a time series, a delay exists on the 
output samples relative to the input samples.  When the filtering is viewed as a smoothing 
of the frequency data, it becomes apparent that a residual sequence can be generated by 
vector subtraction of the smoothed sequence from the pre-filtered sequence.  However, 
delays are required to properly align these sequences prior to subtraction. These are 
shown in the figure as Delay1 through DelayM-1. The residual sequence is passed to the 
following stage for further processing. (In practice, circular convolution can be 
performed rather than linear convolution when implementing the filter process.) 

In the 3-stage ABC process described in Section 2, N = 1024, Delay1 = 20, and 
Delay2 = 5.  Unit-gain Hanning window type FIR filters are used.  In stage 1, no 
averaging over time is performed, while stages 2 and 3 average over 6 and 10 segments 
respectively.  This configuration can be described as allowing for wide-bandwidth 
detection on the output of stage 1, medium-bandwidth detection on the output of stage 2, 
and narrow-bandwidth detection on the output of stage 3.  It is this bandwidth-based 
description of the process that the ABC algorithm is named after.  The benefit of 
selecting more or less stages remains an open question.  In practice, 3 stages have 
produced very useful results. 

For the results shown in Section 2, a simple threshold detector is used on the 
output of each stage.  The threshold for the first stage should be set based on knowledge 
or estimation of the noise floor.  (For example, the rank-select-threshold  (RST) method 
of noise floor estimation can be used as a method of automated noise floor estimation.  In 
this method, the content of the PSD bins are sorted in ascending strength, and the 
strength of the bin at around the pth percentile is selected as the noise floor estimate, 
where p is some appropriate fraction.)  Thresholds beyond stage 1 are set independently 
of the thresholds of all stages.  In Section 2, the stage 2 and 3 thresholds were 
respectively set to 3 and 6 dB.  It should be noted that more sophisticated detection 
methods can be employed.  As an example, it may be appropriate to employ hysteresis in 
the detection process, to avoid detection chatter at signal band edges. 
 
 
 
 
 
 
A.1  Averaging Over Frequency 
 



 34

 For an M stage ABC process implemented using circular convolution to 
accomplish the averaging over frequency bins, let )( im kY  represent the input sequence 
for stage m, with 
 

    Nikki += ,                                                               (A-1) 
 
where the indices to the frequency bins are k = 0, 1, 2, …, N-1.  Thus there are N 
frequency bins available for every time segment, i, i = 0, 1, 2, … .  The input to each 
stage after stage 1 can be written as 
 

)]([)()( mod1 Nmimimim dkZkYkY +−=+ ,  m = 1, 2, 3, …, M-1.                      (A-2) 
 
Here, dm is the sample delay due to averaging over frequency in stage m, and is by 
design, integer valued.  Thus, symmetric FIR filters of even order are chosen for 
averaging over frequency.  The input to stage 1 is the log-scaled power spectral density 
estimate and is represented as )(1 ikY .  Prior to averaging over time segments, the output 
of each stage is )]([ mod Nmim dkZ + , for stage m < M.  For stage M we have no averaging 
over frequency, such that dm = 0 and 
 

)()( iMiM kYkZ = .                                                        (A-3) 
 
The pre-aligned output, )( im kZ , for stage m < M is 
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where 
 

Nj
N e /2π−=Ω ,                                                          (A-5) 

 
and 
 

Nilli +=  .                                                           (A-6) 
 
The sequence )( im lY  is related to )( im kY  as 
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The complex-valued response weights, )(lH m , are a result of transformation of the 
corresponding zero-padded FIR filters, )(khm , as 



 35

 

∑
−

=

Ω=
1

0
)()(

N

k

kl
Nmm khlH  .                                                     (A-8) 

 
These filters are normalized such that 
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and are generally designed such that the filter orders, 2dm, have the property 
 

122 1 −<<+ Ndd mm  ,    m = 1, 2, 3, …, M-1.                                (A-10) 
 
 
A.2  Averaging Over Time 
 
 When uniform weighting is used, averaging over time is accomplished as the 
moving average 
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for an arbitrary index offset,  00 ≥i , and odd number of segments, Km.  The sample 

delay, 2
1−mK , due to averaging over time, is relevant in applications where it is important 

to synchronize the output to the input.  This leads to the reformulation of (A-11) as 
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valid at stage m for 2

1−≥ mKi  and Km odd. 
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Appendix B:  Filter Bank Representation of the ABC Process 
 

An alternate representation of the ABC pre-detection process is obtained by 
considering the equivalent filter bank resulting from frequency averaging.  It should be 
pointed out that because the set of filters comprising the filter bank operates on the log-
scaled periodogram, this is sometimes referred to as a lifter bank.  The term “lifter” rather 
than filter is used as a reminder that the lifter bank is defined over periodic components 
of the periodogram sequence as opposed to periodic components of the time sequence.  
Likewise, the term quefrency is introduced as a reminder that the periodic components of 
the periodogram are related to time delay content rather than frequency content of the 
original input time sequence.  See also [12]. 

It can be shown that the following iterative process is effective for determining 
the impulse responses, )(nbi , of the equivalent ABC frequency averaging process: 
 
Stage 1:  )()( 11 nhnb =     
Stage 2:  )(*)()()( 21122 nhnbdnhnb −−=  
Stage 3:  )(*)]()([)()( 32212133 nhnbdnbddnhnb +−−−−=  
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Here, the filter )(nhi  corresponds to the low-pass filter, LPFi, of stage i.  Each symmetric 
FIR filter, )(nhi , has delay id .  Also, )()( nnhM δ= , and 0=Md .  Note that the 
bracketed term in Equation (B-1) is simply the sum of time-aligned filter bank impulse 
responses, prior to stage M. 

Using this method, Figure B-1 shows the filter bank response for the specific 
ABC system used in the examples given in Section 2 of this report.  It can be noted that 
with the exception of the Stage 1 filter, the responses are not the typical shapes associated 
with filter banks.  In particular, the responses tend to overlap each other fairly 
substantially.  This in part explains why signals that are present in the spectrogram can 
often be detected in more than one stage of the ABC output. 
 Without much difficulty, it is possible to obtain responses that can be considered 
more typical, as shown in Figure B-2.  In this case, the order of the second stage filter is 
the same as the first stage.  A filter order of 64 was chosen for the example, resulting in 
65 coefficients for the first and second stage filters.  Frequency cutoffs of .05 and 0.2 
were chosen for the first and second stages respectively.  These cutoffs are relative to a 2 
Hz sampling rate.  Both filters were Hanning window designs.   
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Figure B-1.  Filter (lifter) bank representation for a specific 3-stage ABC process. 
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Figure B-2.  Filter (lifter) bank representation; Hanning window FIR filter for stages 1 

and 2, 65 coefficients and frequency cutoffs of .05 and .2 respectively. 
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Appendix C:  Task Outline 
 
TASK 1:  Non-linearity Assessment  
 
OBJECTIVES:  To study the effects of non-linearities such as logarithmic compression, 
on statistics of the spectral estimates.  The ABC algorithm is unusual in that averaging is 
performed after non-linear compression, affecting statistical performance. 
 
APPROACH: Review wealth of open literature work in detection theory to determine the 
relevancy to the ABC method.  Apply well founded methods for analytical development 
of the underlying statistics of the various ABC output stages. 
 
TASK 2:  Theoretical Receiver Operating Characteristic (ROC)  
 
OBJECTIVES:  To determine the ROC predicted performance of the ABC algorithm 
when viewed as a receive system. 
 
APPROACH: The ABC algorithm provides for control over parameters affecting both 
time and frequency domain averaging.  Results from task 1 will be used to generate 
parameterized ROC performance curves.  Particular attention will be needed regarding 
threshold-based detection.  Residual spectral estimates beyond stage 1 of the ABC 
algorithm should take into account input spectral energy at detected time-frequency 
locations. 
 
 
TASK 3:  Experimental Receiver Operating Characteristic (ROC)  
 
OBJECTIVES:  To verify the ROC predicted performance of the ABC algorithm via 
experimentation. 
 
APPROACH: An existing MATLAB implementation of the ABC algorithm will be 
leveraged to help verify predicted performance based on basic input signal scenarios to 
be determined.  Where theory and practice diverge, the theoretical analysis of task 2 will 
be refined and re-verified experimentally 
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